Extensions 1→N→G→Q→1 with N=C32×A4 and Q=C22

Direct product G=N×Q with N=C32×A4 and Q=C22
dρLabelID
A4×C62108A4xC6^2432,770

Semidirect products G=N:Q with N=C32×A4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32×A4)⋊1C22 = C3×S3×S4φ: C22/C1C22 ⊆ Out C32×A4246(C3^2xA4):1C2^2432,745
(C32×A4)⋊2C22 = C3⋊S3×S4φ: C22/C1C22 ⊆ Out C32×A436(C3^2xA4):2C2^2432,746
(C32×A4)⋊3C22 = S3×C3⋊S4φ: C22/C1C22 ⊆ Out C32×A42412+(C3^2xA4):3C2^2432,747
(C32×A4)⋊4C22 = C6210D6φ: C22/C1C22 ⊆ Out C32×A42412+(C3^2xA4):4C2^2432,748
(C32×A4)⋊5C22 = S32×A4φ: C22/C1C22 ⊆ Out C32×A42412+(C3^2xA4):5C2^2432,749
(C32×A4)⋊6C22 = C3×C6×S4φ: C22/C2C2 ⊆ Out C32×A454(C3^2xA4):6C2^2432,760
(C32×A4)⋊7C22 = C6×C3⋊S4φ: C22/C2C2 ⊆ Out C32×A4366(C3^2xA4):7C2^2432,761
(C32×A4)⋊8C22 = C2×C324S4φ: C22/C2C2 ⊆ Out C32×A454(C3^2xA4):8C2^2432,762
(C32×A4)⋊9C22 = S3×C6×A4φ: C22/C2C2 ⊆ Out C32×A4366(C3^2xA4):9C2^2432,763
(C32×A4)⋊10C22 = C2×A4×C3⋊S3φ: C22/C2C2 ⊆ Out C32×A454(C3^2xA4):10C2^2432,764


׿
×
𝔽